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1 Special Types of Matrices

Zero Divisors:

If A and B are nonzero matrices such that AB = 0 then A and B are

called zero divisors.

e.g. A =

 1 0

0 0

 B =

 0 0

1 0

 Then AB =

 0 0

0 0



Theorem: The product of two matrices can be a zero matrix though

none of them is a zero matrix.

Let A =


0 c −b

−c 0 a

b −a 0

 And B =


a2 ab ac

ab b2 bc

ac bc c2


Then

AB =


abc− abc b2c− b2c bc2 − bc2

−a2c+ a2c −abc+ abc −ac2 + ac2

ba2 − a2b ab2 − ab2 abc− abc



=


0 0 0

0 0 0

0 0 0


while A 6= 0 B 6= 0

Important Result:
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AB = AC does not imply B = C. i.e. cancellation laws does not hold for

matrix multiplication.

e.g. Let A =

 1 0

0 0

 B =

 0 0

1 0

 C =

 0 0

0 1


Then

AB =

 0 0

0 0


And

AC =

 0 0

0 0


But B 6= C.

Idempotent Matrix:

A square matrix A is said to be idempotent if A2 = A.

For example,

A =


1 0 0

0 1 0

0 0 1

.

Then A2 = A. Hence A is an idempotent matrix.

A square matrix A is said to be idempotent of period p if p is the least

positive integer such that Ap+1 = A.
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For example,

A =

 −1 0

0 −1


Then

A2 =

 1 0

0 1


And

A3 =

 1 0

0 1

 −1 0

0 −1


So A2+1 = A. ∴ A is an idempotent of period 2.

Nilpotent Matrix:

A square matrix A is said to be a nilpotent matrix if Ak = 0 where k is a

positive integer.

If however k is the least integer for which Ak = 0 then k is called the index

of nilpotent matrix A.

For example,

A =


0 0 1

0 0 1

0 0 0


Then
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A2 =


0 0 0

0 0 0

0 0 0


∴ A is a nilpotent matrix index 2.

Involuntary Matrix:

A square matrix A is said to be an innvolutary matrix if A2 = I.

Since I2 = I always, hence unit matrix I is involuntary matrix.

Let A =

 −1 0

0 −1

.

Then A2 =

 1 0

0 1

.

Hence A is also involuntary matrix.

Orthogonal Matrix:

A square matrix A is said to be orthogonal if AA′ = I = A′A.

For example,

A =

 0 1

1 0


Then

A′ =

 0 1

1 0
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Then

AA′ =

 0 1

1 0

  0 1

1 0


=

 1 0

0 1


Similarly we can show that A′A = I. Hence A is an orthogonal matrix.

Unitary Matrix:

A square matrix A is said to be unitary if AθA = I = AAθ.

For example,

A =

 0 i

i 0


Then

Aθ =

 0 −i

−i 0


Then

AAθ =

 0 i

i 0

 0 −i

−i 0


=

 −i2 0

0 −i2



=

 1 0

0 1
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Similarly we can show that AθA = I. Hence A is a unitary matrix.

Theorem 1: If A and B are two idempotent matrices and if AB = BA = 0

then A+B will also be an idempotent matrix.

Proof: Let A and B be two idempotent matrices.

Then A2 = A and B2 = B, and suppose AB = BA = 0.

Now

(A+B)2 = (A+B)(A+B)

= A(A+B) +B(A+B) (∵ DistributiveLaw)

= A2 + AB +BA+B2 (∵ DistributiveLaw)

= A+B (∵ A2 = A and B2 = B)

Hence A+B is an idempotent matrix.

Theorem 2: If A and B are two idempotent matrices and if they com-

mute then AB is idempotent matrix.

Proof: Let A and B be two idempotent matrices. Then A2 = A and

B2 = B.

Assume the A and B commutes. i.e. AB = BA
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Now

(AB)2 = (AB)(AB)

= A(BA)B (∵ AssociativeLaw)

= A(AB)B (∵ AB = BA)

= (AA)(BB) (∵ AssociativeLaw)

= A2B2

= AB

Hence AB is idempotent matrix.

Theorem 3: If A and B are two n-rowed orthogonal matrices then AB

and BA are also orthogonal matrices.

Proof: Let A and B be two orthogonal matrices.

Then AA′ = A′A = I And BB′ = B′B = I

Now

(AB)(AB)′ = (AB)(B′A′)

= A(BB′)A′ (∵ AssociativeLaw)

= A(I)A′

= (AI)A′

= AA′

= I
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Similarly

(AB)′(AB) = (B′A′)(AB)

= B′(A′A)B (∵ AssociativeLaw)

= B′(I)B

= (B′I)B

= B′B

= I

So we get (AB)(AB)′ = I = (AB)′(AB).

Hence AB is an orthogonal matrix.

Similarly we can show that BA is an orthogonal matrix.

Theorem 4: If A and B are two n-rowed unitary matrices then AB and

BA are also unitary matrices.

Proof: Let A and B be two unitary matrices.

Then AAθ = AθA = I And BBθ = BθB = I

Now

(AB)(AB)θ = (AB)(BθAθ)

= A(BBθ)Aθ (∵ AssociativeLaw)

= A(I)Aθ

= (AI)Aθ

= AAθ

= I
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Similarly

(AB)θ(AB) = (BθAθ)(AB)

= Bθ(AθA)B (∵ AssociativeLaw)

= Bθ(I)B

= (BθI)B

= BθB

= I

So we get (AB)(AB)θ = I = (AB)θ(AB).

Hence AB is an unitary matrix.

Similarly we can show that BA is an unitary matrix.

Example 1: Show that the matrix A =


2 −2 −4

−1 3 4

1 −2 −3

 is an idem-

potent matrix.

Solution: We have

A =


2 −2 −4

−1 3 4

1 −2 −3
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Then

A2 =


2 −2 −4

−1 3 4

1 −2 −3




2 −2 −4

−1 3 4

1 −2 −3



=


4 + 2− 4 −4− 6 + 8 −8− 8 + 12

−2− 3 + 4 2 + 9− 8 4 + 12− 12

2 + 2− 3 −2− 6 + 6 −4− 8 + 9



=


2 −2 −4

−1 3 4

1 −2 −3



= A

∴ A2 = A.

Hence A is idempotent matrix.

Example 2: Show that


1 1 3

5 2 6

−2 −1 −3

 is a nilpotent matrix of index 3.
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Solution: Let A =


1 1 3

5 2 6

−2 −1 −3


Then

A2 =


1 1 3

5 2 6

−2 −1 −3




1 1 3

5 2 6

−2 −1 −3



=


1 + 5− 6 1 + 2− 3 3 + 6− 9

5 + 10− 12 5 + 4− 6 15 + 12− 18

−2− 5 + 6 −2− 3 + 3 −6− 6 + 9



=


0 0 0

3 3 −3

−1 −1 −3
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Then

A3 = A2A

=


0 0 0

3 3 −3

−1 −1 −3




1 1 3

5 2 6

−2 −1 −3



=


0 0 0

0 0 0

0 0 0


Thus A3 = 0.

Hence A is a nilpotent matrix of index 3.

Example 3: Prove that the matrix 1√
3

 1 1 + i

1− i −1

 is unitary.

Solution: Let A = 1√
3

 1 1 + i

1− i −1



Then A′ = 1√
3

 1 1− i

1 + i −1



Then Aθ = A′ = 1√
3

 1 1 + i

1− i −1


12



Then

AAθ =
1√
3

 1 1 + i

1− i −1

 1√
3

 1 1 + i

1− i −1



=
1

3

 1 + (1− i)2 1 + i− (1 + i)

(1− i)− (1 + i) 1− i2 + 1



=
1

3

 3 0

0 3



=

 1 0

0 1



= I

Thus AAθ = I. Similarly we get AθA = I

Hence A is a unitary matrix.

Example 4: Show that A =


−5 −8 0

3 5 0

1 2 −1

 is involuntary.
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Solution: We have A =


−5 −8 0

3 5 0

1 2 −1



Then

A2A =


−5 −8 0

3 5 0

1 2 −1



−5 −8 0

3 5 0

1 2 −1



=


25− 24 + 0 40− 40 + 0 0 + 0 + 0

−15 + 15 + 0 −24 + 25 + 0 0 + 0 + 0

−5 + 6− 1 −8 + 10− 2 0 + 0 + 1



=


1 0 0

0 1 0

0 0 1



= I

Thus A2 = I. Hence A is involuntary matrix.

Example 5: Determine the values of α,β and γ when A =


0 2β γ

α β −γ

α −β γ


is orthogonal.
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Solution: We have A =


0 2β γ

α β −γ

α −β γ



Then A′ =


0 α α

2β β β

γ −γ γ

.

If A is orthogonal then

AA′ = I

⇒


0 2β γ

α β −γ

α −β γ




0 α α

2β β β

γ −γ γ

 =


1 0 0

0 1 0

0 0 1



⇒


4β2 + γ2 2β2 − γ2 −2β2 + γ2

2β2 − γ2 α2 + β2 + γ2 α2 − β2 − γ2

−2β2 + γ2 α2 − β2 − γ2 α2 + β2 + γ2

 =


1 0 0

0 1 0

0 0 1


∴ 4β2 + γ2 = 1 2β2 − γ2 = 0 α2 + β2 + γ2 = 1 and α2 − β2 − γ2 = 0

Then 6β2 = 1⇒ β = ±1√
6

Also γ2 = 2β2 ⇒ γ3 = 1
3
⇒ γ = ±1√

3

Also from α2+β2+γ2 = 1 and α2−β2−γ2 = 0 we get 2α2 = 1. Then α = ±1√
2

Example 6: If A is an idempotent matrix and A + B = I then show

that B is also an idempotent matrix and AB = BA = 0.
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Solution: Let A be an idempotent matrix and suppose A+B = I.

Then

B = I − A

Then

B2 = (I − A)2

= (I − A)(I − A)

= I(I − A)− A(I − A) (∵ DistributiveLaw)

= I − A− A+ A2 (∵ DistributiveLaw)

= I − A− A+ A (∵ A2 = A)

= I − A

= B

Thus B2 = B. Hence B is an idempotent matrix.

Also AB = A(I − A) = A− A2 = A− A = 0

And BA = (I − A)A = A− A2 = A− A = 0

Thus AB = BA = 0

Example 7: If A is a real skew-symmetric matrix such that A2 + I = 0

then show that A is orthogonal and is of even order.
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Solution: Let A be a skew-symmetric matrix such that A2 + I = 0.

Then A′ = −A.

Also A2 + I = 0⇒ A2 = −I

Now AA′ = A(−A) = −A2 = −(−I) = I

Similarly A′A = (−A)A = −A2 = −(−I) = I.

Thus AA′ = A′A = I. Hence A ia an orthogonal matrix.

Now suppose A is an n × n matrix.

Since A′ = (−A) = (−1)A

Then |A′| = |(−1)A|

⇒ |A| = (−1)n|A| (∵ |A′| = |A| and |kA| = kn|A|)

⇒ (1− (−1)n)|A| = 0

Then either (1− (−1)n) = 0 or |A| = 0 .

But since A is orthogonal |A| 6= 0.

Then (1− (−1)n) = 0 which is possible only if n is even.

Hence A is an orthogonal matrix of even order.

2 Adjoint of a square matrix

Definition: Let A be a square matrix. The matrix [Aij] where Aij denotes

the cofactor of aji in the determinant of A is called the adjoint of A and is

denoted by the symbol adj A.

(The cofactor of aij = (−1)i+jQij where Qij is the determinant of the matrix

obtained by removing the ith row and jth column.)
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So the adjoint of A is the transpose of the matrix formed by the cofactors

of A.

If A =



a11 a12 . . . . . . a1n

a21 a22 . . . . . . a2n

. . . . . . . . . . . . . . .

ai1 ai2 . . . . . . ain

. . . . . . . . . . . . . . .

an1 an2 . . . . . . ann



Then adjA =



A11 A21 . . . . . . An1

A12 A22 . . . . . . An2

. . . . . . . . . . . . . . .

A1i A2i . . . . . . Ani

. . . . . . . . . . . . . . .

A1n A2n . . . . . . Ann



where the elements of each column(row) of adj A are the cofactors of the

corresponding elements of the corresponding row(column) of A in |A|.

For example let A =


1 1 3

0 1 −1

2 0 −4
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Then A′ =


1 0 2

1 1 0

3 −1 −4



Then adjA =


−4 4 −4

−2 −10 1

−2 2 1



An Important Relation Between A and adj A:

Theorem 5 : A(adjA) = |A|I = (adjA)A.

Proof: The (i, j)th entry of A(adj A)

= ai1A1j + ai2A2j + · · ·+ ainAnj

= 0 if i 6= j

|A| if i = j

Thus A(adjA) = Diag[|A|, |A|, . . . , |A|]

Similarly (adjA)A = Diag[|A|, |A|, . . . , |A|]

Hence A(adjA) = |A|I = (adjA)A

Corollary: If |A| 6= 0 then,

A( 1
|A|adjA) = I = ( 1

|A|adjA)A

3 Inverse of a Matrix:

Definition: If A be any given matrix then a matrix B if it exists such that

AB = I = BA is called inverse of A,where I being the unit matrix.
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For the product AB and BA both to be defined and equal it is necessary

that A and B are square matrices of same order. Thus nonsquare matrices

can not possess inverses.

Remark: The inverse of a matrix if it exists must be unique.

Let A be given square matrix. If possible assume that B and C are two

inverses of A.

Then AB = BA = I and AC = CA = I.

Now B = B(I) = B(AC) = (BA)C = IC = C.

∴ B = C

Existence of Inverse:

Theorem 6: A necessary and sufficient condition for a square matrix A

to possess inverse is that |A| 6= 0

Proof: Let A be any given square matrix.

� The condition |A| 6= 0 is necessary.

Suppose that A has an inverse.

Then there exists a matrix B such that

AB = I = BA.
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∴ |AB| = |I|

∴ |A||B| = 1

∴ |A| 6= 0

� The condition |A| 6= 0 is sufficient.

Suppose |A| 6= 0.

Let B = 1
|A|(adjA).

Then

AB = A(
1

|A|
(adjA))

=
1

|A|
(A(adjA))

=
1

|A|
(|A|I) (∵ by Theorem 5 A(adjA) = |A|I = (adjA)A)

= I

Similarly BA = I.

Thus B is the inverse of A.

Non-singular and Singular Matrices:

A square matrix A is said to be non-singular matrix if |A| 6= 0 and is said

to be singular matrix if |A| = 0.

Thus only non-singular matrices possess inverses.

NOTE: It may be seen that if the elements of a non-singular matrix A

are members of F then the elemnts of its inverse A−1 are also members of F

where F can be either of Q, R or C.
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Reversal Law for the Inverse of a Product:

Theorem 7: If A and B be two non-singular matrices of the same order,

then the product AB is non-singular and

(AB)−1 = B−1A−1

i.e inverse of a product is the product of the inverses taken in reverse order.

Proof: Let A and B be two non-singular matrices.

Then A−1 and B−1 exist. Now

(AB)(B−1A−1) = A(BB−1)A−1 (∵ AssociativeLaw)

= AIA−1

= (AI)A−1

= AA−1

= I

Similarly (B−1A−1)(AB) = I.

Thus B−1A−1 is the inverse of AB. Hence inverse of AB exists.

Then by theorem 6 |AB| 6= 0.

Then we can say that AB is non-singular matrix.

Generalization:

By successive applications of the Associative Law, we can easily generalize

the above result and show that if A1, A2, . . . , Ak are non-singular matrices of

the same order, then
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(A1A2 . . . Ak)
−1 = A−1k A−1k−1 . . . A

−1
1

Negative Integral Powers of a Non-Singular Matrix:

If A is a non-singular matrix and k a positive integer, then by definition,

we write

A−k = (Ak)−1

so that A−k is the inverse of Ak. Also we agree to write

A0 = I

By generalized reversal law we have

(Ak)−1 = (AA . . . A)−1

= (A−1A−1 . . . A−1

= (A−1)k

∴ (Ak)−1 = (A−1)k

It may now be easily shown that

AmAn = Am+n

And

(Am)n = Amn

where m and n can be either of positive integer, negative integer or zero and

A should be a non-singular matrix.

Theorem 8: The operations of transposing and inverting are commuta-

tive.

i.e.
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(A′)−1 = (A−1)′

Proof: Let A be a non-singular matrix.

Then AA−1 = I = A−1A

Taking transpose, we obtain

(AA−1)′ = I ′ = (A−1A)′

∴ (A−1)′A′ = I = A′(A−1)′ (∵ (AB)′ = B′A′)

∴ (A−1)′ is the inverse of A′.

∴ (A′)−1 = (A−1)′

NOTE: Similarly by taking conjugate transpose we can get

(Aθ)−1 = (A−1)θ

HOMEWORK: If In be a unit matrix of order n show that

adjIn = In

Example 8: If A is a square matrix then show that adjA′ = (adjA)′.

Solution: Let A be a square matrix of order n.

Then both adjA′ and (adjA)′ are square matrices of order n.

Now

the (i, j)th element of (adjA)′ = the (j, i)th element of adj A

= the cofactor of (i, j)th element in |A|
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Also

the (i, j)th element of adjA′ = the cofactor of (j, i)th element in |A′|

= the cofactor of (i,j)th element in |A|

Thus (adjA)′ = adjA′.

HOMEWORK: If A is a symmetric matrix then show that adj A is also

symmetric.

Example 9: If A and B are square matrices of same order then

adj (AB) = adj (B) adj (A)

(provided that AB is non-singular)

Solution: We have

AB(adj (AB)) = |AB|I = (adj (AB))AB ......(1)

Also

AB(adj (B) adj (A)) = A(B adj (B))adj (A) (∵ Associatve Law)

= A(|B|I)adj (A) (∵ B(adj B) = |B|I = (adj B)B)

= |B|(A(adj A))

= |B||A|I

= |A||B|I........(2)

Then from (1) and (2) we get
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AB(adj (AB)) = AB(adj (B) adj (A))

Multiplying both sides by (AB)−1 we get,

adj (AB) = adj (B) adj(A)

Example 10: If A be an n× n matrix then prove that

|adj A| = |A|n−1

(Provided that |A| 6= 0)

Solution: We know that,

A adj A = |A| In

∴ |A adj A| = ||A| In|

∴ |A| |adj A| = |A|n |In| (∵ |AB| = |A||B| and |kA| = kn|A|)

∴ |A| |adj A| = |A|n

∴ |adj A| = |A|n−1 if |A| 6= 0

Example 10: Show that if A and B are symmetric matrices and commute

then

(a) A−1B (b) AB−1 and (c) A−1B−1

are symmetric matrices.

Solution: Let A and B be two symmetric matrices.

Then A′ = A and B′ = B

Assume that A and B commute.
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i.e. AB = BA

(a)

(A−1B)′ = (B′)((A−1)′)

= B′((A′)−1) (∵ (A−1)′ = (A′)−1)

= BA−1 (∵ A′ = A and B′ = B)..............(1)

Since

AB = BA

⇒ A−1(AB)A−1 = A−1(BA)A−1

⇒ BA−1 = A−1B................(2)

Using (2) in (1) we get

(A−1B)′ = (A−1B)

hence A−1B is symmetric matrix.

(b) HOMEWORK

(c)

(A−1B−1)′ = (B−1)′(A−1)′

= (B′)−1(A′)−1 (∵ (A−1)′ = (A′)−1)

= B−1A−1....................(3)
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Since

AB = BA

⇒ (AB)−1 = (BA)−1

⇒ B−1A−1 = A−1B−1..................(4)

Using (4) in (3) we get

(A−1B−1)′ = A−1B−1

Hence A−1B−1 is a symmetric matrix.

Example 11: If adj B = A and P and Q are two unimodular matrices

then prove that

adj (Q−1BP−1) = PAQ

Solution: Since P and Q are unimodular,

|P | = |Q| = 1

Now

Q−1BP−1 = (Q−1B)P−1

Then

adj (Q−1BP−1) = adj ((Q−1B)P−1)

= adj (P−1)adj (Q−1B) (∵ adj (AB) = adj B adj A)

= adj (P−1)adj B adj (Q−1)

Thus adj (Q−1BP−1) = adj (P−1)adj B adj (Q−1) .........(1)

We know that
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P−1adj (P−1) = |P−1| I ........(2)

∴ adj (P−1) = P |P−1|I

= P
1

|P |
I

= P (∵ |P | = 1)

Similarly

adj (Q−1) = Q ..........(3)

Using (2) and (3) in (1) we get

adj (Q−1BP−1) = P adj B Q = PAQ (∵ adj B = A)

NOTATIONS:

We consider F as either of Q,R or C.

Let m,n ∈ N. Then

Mm×n = Set of all m× n matrices with elements from F

And

Mn×n = Set of all n× n square matrices with elements from F

Note that Mm×n is closed under matrix addition,while Mn×n is closed under

matrix addition as well as matrix multiplication.

4 Left and Right Zero Divisors:

If AB = 0 and if A 6= 0 then A is called a left zero divisor, and if AB = 0

and if B 6= 0 then B is called the right zero divisor.
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5 Trace of Matrix:

Definition: Let A be a square matrix of order n. The sum of the elements

of A lying along the principal diagonal is called the trace of A. We shall write

trace of A as tr. A.

Thus if A = [aij]n×n then tr. A =
∑n

i=1 aii = a11 + a22 + · · ·+ ann

Theorem 9: Let A and B be two square matrices of order n and λ be

a scalar. Then

(i) tr. (λ A) = λ(tr. A) (ii) tr. (A+B) = tr. (A) + tr. (B)

(iii) tr. (AB) = tr. (BA)

Solution: Let A = [aij]n×n and B = [bij]n×n

(i) We have

λ A = [λ aij]n×n

∴ tr. (λ A) =
n∑
i=1

λaii

= λ

n∑
i=1

aii

= λ (tr. A)

(ii) We have

A+B = [(aij + bij)]n×n
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∴ tr. (A+B) =
n∑
i=1

(aii + bii)

=
n∑
i=1

aii +
n∑
i=1

bii

= tr. A+ tr. B

(iii) We have

AB = [cij]n×n where cij =
∑n

k=1 aikbkj

And

BA = [dij]n×n where dij =
∑n

k=1 bikakj

Now,

tr. (AB) =
n∑
i=0

cii

=
n∑
i=0

(
n∑
k=1

aikbki)

Interchanging the order of summation in the last sum

tr. (AB) =
n∑
k=1

(
n∑
i=1

bkiaik)

=
n∑
k=1

dkk

= d11 + d22 + · · ·+ dnn

= tr. (BA)
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6 Elementary Transformation of a Matrix:

The following transformation, three of which refer to rows and three of

which refer to columns are known as Elementary Transformation.

I. Interchange of two rows(columns).

II. The multiplication of a row (column) by a non-zero number.

III. The addition to the elments of a row(column), the corresponding ele-

ments of a row(column) multiplied by any number.

Symbols to be employed for the Transformation:

1. Rij - interchanging ith and jth row.

2. Ri(c) - multiplication of th ith row by c 6= 0.

3. Rij(k)- addition to the ith row , the product of the jth row by k.

The corresponding column transformation will be denoted by writing C, in

place of R. i.e. by Cij ,Ci(c) , Cij(k) respectively.

7 Reduced Row-Echelon Form:

A matrix is said to be in reduced row echelon form if all the following

conditions are satisfied:

1. The first non-zero element in each row is 1.(This 1 is called a leading

one).

2. Each successive row has (from upper to lower) the leading one in a

32



column farther to the right.

(Each leading one of a row should be to the right of the leading one in

the previous row)

3. The leading one in each row is the only non-zero entry in the column

containing this leading one.

4. The zero rows (row in which each entry is zero) are the final rows of

the matrix.

Row-Echelon Form:

Definition: A matrix satisfying conditions 1, 2 and 4 is said to be in Row-

Echelon Form.

Thus every matrix in Reduced raw-echelon form is also in Raw-echelon form,

but the converse may not necessarily be true.

Examples: Consider the following matrices.

A =


1 0 0

0 0 0

0 1 0

 B =


1 0 0

0 1 2

0 0 1

 C =


0 0 1

1 0 0

0 1 0



D =


0 0 1 2

0 0 0 0

0 0 0 0


A is not in Reduced row echelon form and also not in row echelon form be-

cause zero row is placed before non zero row. (Condition 4 not satisfied.)

B is not in Reduced row echelon form because in third row entry above lead-

ing one is nonzero,(Condition 3 not satisfied) but B is in row echelon form.
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C is not is reduced row echelon form and also not in row echelon form because

the leading one in first row is lying in third column and the leading one in

second row lies in first column.(Condition 2 not satisfied.)

D is in reduced row echelon form as well as in row echelon form.

E =


1 0 2 0

0 1 6 0

0 0 0 1

0 0 0 0

 F =


0 0 0

0 0 0

0 0 0


Here E and F both are in reduced row echelon form as well as in row echelon

form.

Remark:

If a matrix is in reduced row echelon form then it is also in row echelon form.

Example 12: Convert A =


1 3 −2 0 2 0 0

2 6 −5 −2 4 −3 −1

0 0 5 10 0 15 5

2 6 0 8 4 18 6

 into its equiv-

alent row-echelon form.

Solution: We have
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A =


1 3 −2 0 2 0 0

2 6 −5 −2 4 −3 −1

0 0 5 10 0 15 5

2 6 0 8 4 18 6


R2 → R2 − 2R1 , R4 − 2R1

∼


1 3 −2 0 2 0 0

0 0 −1 −2 0 −3 −1

0 0 5 10 0 15 5

0 0 4 8 0 18 6


R2 → (−1)R2

∼


1 3 −2 0 2 0 0

0 0 1 2 0 3 1

0 0 5 10 0 15 5

0 0 4 8 0 18 6


R1 → R1 + 2R2 ,R3 → R3 − 5R2, R4 → R4 − 4R2

∼


1 3 0 4 2 6 2

0 0 1 2 0 3 1

0 0 0 0 0 0 0

0 0 0 0 0 6 2


R3 ↔ R4

∼


1 3 0 4 2 6 2

0 0 1 2 0 3 1

0 0 0 0 0 6 2

0 0 0 0 0 0 0
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R3 → (1
6
)R3

∼


1 3 0 4 2 6 2

0 0 1 2 0 3 1

0 0 0 0 0 1 1
3

0 0 0 0 0 0 0


R2 → R2 − 3R3, R1 → R1 − 6R3

∼


1 3 0 4 2 0 0

0 0 1 2 0 0 0

0 0 0 0 0 1 1
3

0 0 0 0 0 0 0


This is the reduced row echelon form.

8 Rank of a matrix (Using Reduced Row Ech-

elon Form:

Definition: Let A be a m × n matrix, then the rank of the matrix A is

the number of non-zero rows in the reduced row echelon form of A and is

denoted by rank (A) or ρ(A).

9 Nullity of a Matrix:

If A is square matrix of order n then n − ρ(A) is called the nullity of the

matrix and it is denoted by N(A).
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Example 13: Obtain the reduced row echelon form of the matrix A =
1 3 2 2

1 2 1 3

2 4 3 4

3 7 4 8

 and hence find the rank of the matrix A.
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Solution: We have

A =


1 3 2 2

1 2 1 3

2 4 3 4

3 7 4 8

 R21(−1) R31(−2) R41(−3)

∼


1 3 2 2

0 −1 −1 1

0 −2 −1 0

0 −2 −2 2

 R2(−1)

∼


1 3 2 2

0 1 1 −1

0 −2 −1 0

0 −2 −2 2

 R12(−3) R32(2) R42(2)

∼


1 0 −1 5

0 1 1 −1

0 0 1 −2

0 0 0 0

 R23(−1) R13(1)

∼


1 0 0 3

0 1 0 1

0 0 1 −2

0 0 0 0
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Which is the reduced row echelon form and ρ(A) = 3.

Example 14: Determine rank of A if

A =



3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19
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Solution: We have,

A =



3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19


R12(−1)

∼



−1 −1 −1 −1 −1

4 5 6 7 8

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19


R1(−1)

∼



1 1 1 1 1

4 5 6 7 8

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19


R21(−1) R31(−5) R41(−10) R51(−15)

∼



1 1 1 1 1

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4


R12(−1) R32(−1) R42(−1) R52(−1)
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∼



1 0 −1 −2 −3

0 1 2 3 4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


Which is the reduced row echelon form and hence ρ(A) = 2.

Example 15: Find the rank of the matrix A =


8 0 0 16

0 0 0 6

0 9 9 9
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Solution: We have

A =


8 0 0 16

0 0 0 6

0 9 9 9

 R1(
1

8
)

∼


1 0 0 2

0 0 0 6

0 9 9 9

 R32

∼


1 0 0 2

0 9 9 9

0 0 0 6

 R2(
1

9
)

∼


1 0 0 2

0 1 1 1

0 0 0 6

 R3(
1

6
)

∼


1 0 0 2

0 1 1 1

0 0 0 1

 R13(−1) R23(−1)

∼


1 0 0 0

0 1 1 0

0 0 0 1
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Which is the reduced row echelon form and hence ρ(A) = 3.

10 Inverse of a matrix (Using Gauss-Jordan

Method):

Working Rule:

Let A be an n× n square matrix.

Step 1: Augment the matrix A in the form [A|In], which is of order n× 2n,

in which the first n columns are that of A and the remaining n columns

are that of In.

Step 2: Obtain reduced row echelon form of [A|In] by using elementary row

transformation.

Step 3: If the first n columns of [A|In] are converted into In then A is non-

singular and the last n columns of the augmented matrix in the reduced

row echelon form is the inverse of A. That is [A|In] is reduced to the

form [In|A−1]

Step 4: If the first n columns of [A|In] cannot be converted into In then A

is singular and stop the procedure.

Example 16: Find the inverse of A =


3 −3 4

2 −3 4

0 −1 1

.
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Solution: We have A =


3 −3 4

2 −3 4

0 −1 1
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Then

[A|I3] =


3 −3 4 1 0 0

2 −3 4 0 1 0

0 −1 1 0 0 1

 R12(−1)

∼


1 0 0 1 −1 0

2 −3 4 0 1 0

0 −1 1 0 0 1

 R21(−2)

∼


1 0 0 1 −1 0

0 −3 4 −2 3 0

0 −1 1 0 0 1

 R23(−4)

∼


1 0 0 1 −1 0

0 1 0 −2 3 −4

0 −1 1 0 0 1

 R32(1)

∼


1 0 0 1 −1 0

0 1 0 −2 3 −4

0 0 1 −2 3 −3

 = [I3|A−1]

Hence
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A−1 =


1 −1 0

−2 3 −4

−2 3 −3



Example 17: Find A−1 using row operations if A =


1 0 1

−1 1 1

0 1 0

.

Solution: We have

A =


1 0 1

−1 1 1

0 1 0
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Then

[A|I3] =


1 0 1 1 0 0

−1 1 1 0 1 0

0 1 0 0 0 1

 R21(1)

∼


1 0 1 1 0 0

0 1 2 1 1 0

0 1 0 0 0 1

 R32(−1)

∼


1 0 1 1 0 0

0 1 2 1 1 0

0 0 −2 −1 −1 1

 R3(
−1

2
)

∼


1 0 1 1 0 0

0 1 2 1 1 0

0 0 1 1
2

1
2
−1
2

 R13(−1) R23(−2)

∼


1 0 0 1

2
−1
2

1
2

0 1 0 0 0 1

0 0 1 1
2

1
2

−1
2

 = [I3|A−1]

Hence

A−1 =


1
2
−1
2

1
2

0 0 1

1
2

1
2

−1
2
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Example 18: By using Gauss Jordan method find the inverse of the ma-

trix A =


1
5

1
5

−2
5

1
5

1
5

1
10

1
5
−4
5

1
10

.

Solution: We have A =


1
5

1
5

−2
5

1
5

1
5

1
10

1
5
−4
5

1
10

.
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Then

[A|I3] =


1
5

1
5

−2
5

1 0 0

1
5

1
5

1
10

0 1 0

1
5
−4
5

1
10

0 0 1

 R1(5)

∼


1 1 −2 5 0 0

1
5

1
5

1
10

0 1 0

1
5
−4
5

1
10

0 0 1

 R21(
−1

5
) R31(

−1

5
)

∼


1 1 −2 5 0 0

0 0 1
2
−1 1 0

0 −1 1
2
−1 0 1

 R23

∼


1 1 −2 5 0 0

0 −1 1
2
−1 0 1

0 0 1
2
−1 1 0

 R2(−1)

∼


1 1 −2 5 0 0

0 1 −1
2

1 0 −1

0 0 1
2
−1 1 0

 R12(−1)

∼


1 0 −3

2
4 0 1

0 1 −1
2

1 0 −1

0 0 1
2
−1 1 0

 R13(3) R23(1)
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∼


1 0 0 1 3 1

0 1 0 0 1 −1

0 0 1
2
−1 1 0

 R3(2)

∼


1 0 0 1 3 1

0 1 0 0 1 −1

0 0 1 −2 2 0

 = [I3|A−1]

Hence

A−1 =


1 3 1

0 1 −1

−2 2 0


Example 19: Find the inverse of the matrix A by Gauss Jordan Method

where

A =


0 1 2

1 2 3

3 1 1


Solution: We have

A =


0 1 2

1 2 3

3 1 1
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Then

[A|I3] =


0 1 2 1 0 0

1 2 3 0 1 0

3 1 1 0 0 1

 R12

∼


1 2 3 0 1 0

0 1 2 1 0 0

3 1 1 0 0 1

 R31(−3)

∼


1 2 3 0 1 0

0 1 2 1 0 0

0 −5 −8 0 −3 1

 R12(−2) R32(5)

∼


1 0 −1 −2 1 0

0 1 2 1 0 0

0 0 2 5 −3 1

 R3(
1

2
)

∼


1 0 −1 −2 1 0

0 1 2 1 0 0

0 0 1 5
2

−3
2

1
2

 R13(1) R23(−2)

∼


1 0 0 1

2
−1
2

1
2

0 1 0 −4 3 −1

0 0 1 5
2

−3
2

1
2

 = [I3|A−1]
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Thus

A−1 =


1
2

−1
2

1
2

−4 3 −1

5
2

−3
2

1
2


11 Solution of a System Using Inverse of a

Matrix:

Theorem 10: Let AX = B be a system of linear equations where A is a

square coefficient matrix.

I If A is a non-singular matrix then the system has a unique solution X =

A−1B.

II If A is singular then the system has no solutions or infinitely many solu-

tions.

Proof:

I Let A be a non-singular matrix. Then A−1 exists.

First we show that X = A−1B is a solution of AX = B. Now

A(A−1B) = (AA−1)B = IB = B.

∴ X = A−1B is a solution of AX = B.

Next we show that this solution is unique. Suppose Y is any other

solution of the system.

Then we have AY = B.
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Then A−1(AY ) = A−1B.

∴ Y = A−1B = X.

Thus A−1B is a unique solution of AX = B.

II If A is singular then ρ(A) < n.

Then the reduced row echelon form must have some zero rows.

Then there must be at least an independent variables which assumes

any arbitrary value. Therefore there exists infinite number of solution

or no solution exists.

Example 20: Solve the following system of equations by inverse method.

x− 4y + 5z = 8

3x+ 7y − z = 3

x+ 15y − 11z = 14

Solution: The system in matrix form is given by
1 −4 5

3 7 −1

1 15 −11



x

y

z

 =


8

3

14


Then

A =


1 −4 5

3 7 −1

1 15 −11
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∴ [A|I3] =


1 −4 5 1 0 0

3 7 −1 0 1 0

1 15 −11 0 0 1

 R21(−3) R31(−1)

∼


1 −4 5 1 0 0

0 19 −16 −3 1 0

0 19 −16 −1 0 1

 R32(−1)

∼


1 −4 5 1 0 0

0 19 −16 −3 1 0

0 0 0 2 −1 1

 R3(
1

19
)

∼


1 −4 5 1 0 0

0 1 −16
19

−3
19

1
19

0

0 0 0 2 −1 1

 R12(4)

∼


1 0 31

19
7
19

4
19

0

0 1 −16
19

−3
19

1
19

0

0 0 0 2 −1 1


The third row is a zero row . Hence A−1 does not exist.

Thus the system has no solutions or infinite number of solution.
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Example 21: Solve the following system of equations by inverse method

x+ y + z = 3

x+ 2y + 3z = 4

x+ 4y + 9z = 6

Solution: The system in matrix form is given by
1 1 1

1 2 3

1 4 9



x

y

z

 =


3

4

6



55



∴ [A|I3] =


1 1 1 1 0 0

1 2 3 0 1 0

1 4 9 0 0 1

 R21(−1) R31(−1)

∼


1 1 1 1 0 0

0 1 2 −1 1 0

0 3 8 −1 0 1

 R12(−1) R32(−3)

∼


1 0 −1 2 −1 0

0 1 2 −1 1 0

0 0 2 2 −3 1

 R3(
1

2
)

∼


1 0 −1 2 −1 0

0 1 2 −1 1 0

0 0 1 1 −3
2

1
2

 R13(1) R23(−2)

∼


1 0 0 3 −5

2
1
2

0 1 0 −3 4 −1

0 0 1 1 −3
2

1
2

 R13(1) R23(−2)

∴ A−1 =


3 −5

2
1
2

−3 4 −1

1 −3
2

1
2
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Then

X = A−1B =


3 −5

2
1
2

−3 4 −1

1 −3
2

1
2




3

4

6

 =


2

1

0


Thus we get x = 2 ,y = 1 ,z = 0.

12 Rank of a Matrix (Minor Form):

Minor of a matrix:

Let A be any m× n matrix and let t be any natural number such that

t ≤ min(m,n)

Now we delete (m-t) rows and (n-t) columns of the matrix, then the remain-

ing elements form a t-rowed square submatrix whose determinant is a minor

of the matrix A of order t.

Rank of a matrix:

For a matrix A a number r with the followinng two properties is called

the ranl of the matrix:

(i) There is atleast one non-zero minor of order r

(ii) Every minor of order (r+1) is zero.

Briefly we may say that the rank of a matrix is the largest order of a non-zero

minor of a matrix. Rank of a matrix is denoted by ρ(A).

Remarks:
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(1) ρ(A) ≤ n.

(2) Rank of every non-zero matrix is at least 1 and the rank of zero matrix

is zero.

(3) ρ(A′) = ρ(A) and ρ(Aθ) = ρ(A)

(4) Rank of a non-singular matrix of order n is n.

Example 22: Find the rank of the matrix A =


2 3 4

3 1 2

−1 2 2



Solution: We have A =


2 3 4

3 1 2

−1 2 2


Then |A| = 0.

Now, ∣∣∣∣∣∣2 3

3 1

∣∣∣∣∣∣ = −7.

Thus ρ(A) = 2.

Invariance of Rank Through Elementary Transformation:

Theorem 11: Elementary transformations of a matrix do not alter its

rank.

Proof: Assume it without proof.

Corollary: The elementary column transformation do not alter its rank,

this is because the rank of A′ and A are same.
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Reduction to Normal Form:

Theorem 11: Every non-zero matrix of rank r can, by a sequence of ele-

mentary transformations be reduced to the form Ir O

O O


where Ir being the r-rowed unit matrix.

The form obtained here is called the Normal form.

Proof: Assume without proof.

NOTES:

1. As the rank of the matrix does not alter due to elementary transforma-

tions, the rank of the normal form will be same as the rank of a given matrix

A.

2. In evaluation of the rank of a matrix by method of elementary trans-

formations, if certain rows and columns are reduced to zero entirely, we can

remove them without affecting the rank of the matrix. This method is known

as Sweep Out or Pivotal Method.

Example 23: Reduce the matrix A to its normal form whereA =


0 1 −3 −1

1 0 1 1

3 1 0 2

1 1 −2 0


Hence find its rank.
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Solution: We have

A =


0 1 −3 −1

1 0 1 1

3 1 0 2

1 1 −2 0



∼


1 0 1 1

0 1 −3 −1

3 1 0 2

1 1 −2 0

 R12

∼


1 0 1 1

0 1 −3 −1

0 1 −3 −1

0 1 −3 −1

 R31(−3) R41(−1)

∼


1 0 1 1

0 1 −3 −1

0 0 0 0

0 0 0 0

 R32(−1) R42(−1)
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∼


1 0 1 −1

0 1 0 0

0 0 0 0

0 0 0 0

 C32(−1) C42(−1)

∼


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 C31(−1) C41(−1)

∼

 I2 O

O O


This is the normal form of A and ρ(A) = 2.

13 Elementary Matrices:

Definition: A matrix obtained from a unit matrix by subjecting it to any

of the elementary transformation is called an elementary matrix.

Symbols For Elementary Matrices:

I. Eij - the matrix obtained by interchanging ith row and jth row. It may

easily be seen that the matrices obtained by changing ith row and jth row or

by interchanging ith and jth column are the same.

II. (a) Ei(c) will denote the matrix obtained by multiplying the ith row
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by c.

(b) Ei(c) will also denote the matrix obtained by multiplying the ith column

with c.

III. (a) Eij(k) will denote the matrix , obtained by adding to the ele-

ments of the ith row of the unit matrix , the products by k of the correspond-

ing elements of jth row.

(b) E ′ij(k) which is the transpose of Eij(k) will denote the matrix, obtained

by adding to the elements of the ith column , the products by k of the corre-

sponding elements of the jth.

Determinants of Elementary Matrices:

It is easy to see that

|Eij| = −1, |Ei(c)| = c 6= 0, |Eij(k)| = |E ′ij(k)| = 1

Elementary Transformation And Elementary Matrices:

Lemma: Every elementary row(column) transformation of a product of

two matrices can be effected by subjecting the pre-factor (post-factor) to the

same row (column) transformation.

Theorem 12: Every elementary row(column) transformation of a matrix

can be brought about by pre-multiplication(post-multiplication) with the

corresponding elementary matrix.

Proof: Assume it without proof.
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Example 24: For A =


1 1 2

1 2 3

0 −1 −1

 find non-singular matrices P and

Q such that PAQ is in a normal form.

Solution: We write A = IAI

Every elementary row(column) transformation of the product will be affected

by subjecting the pre-factor(post-factor) of A to the same.

We have 
1 1 2

1 2 3

0 −1 −1

 =


1 0 0

0 1 0

0 0 1

 A


1 0 0

0 1 0

0 0 1


Performing C21(−1) and C31(−2)

1 0 0

1 1 1

0 −1 −1

 =


1 0 0

0 1 0

0 0 1

 A


1 −1 −2

0 1 0

0 0 1


Performing R21(−1)

1 0 0

0 1 1

0 −1 −1

 =


1 0 0

−1 1 0

0 0 1

 A


1 −1 −2

0 1 0

0 0 1


Performing C32(−1)
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1 0 0

0 1 0

0 −1 0

 =


1 0 0

−1 1 0

0 0 1

 A


1 −1 −1

0 1 −1

0 0 1


Performing R32(1)

1 0 0

0 1 0

0 0 0

 =


1 0 0

−1 1 0

−1 1 1

 A


1 −1 −1

0 1 −1

0 0 1


Thus we have the required normal form. We have

P =


1 0 0

−1 1 0

−1 1 1

 Q =


1 −1 −1

0 1 −1

0 0 1


14 Equivalence of Matrices:

Definition: Let A ∈Mm×n(F ) and B ∈Mm×n(F ). A is said to be equiva-

lent to B, if there exists two non-singular matrices P and Q whose elements

are members of F such that

A = PBQ

The following properties of this relation are fundamental.

I Reflexivity: Every matrix A is equivalent to itself, for we have

A = IAI so that P = I and Q = I.

II Symmetry: If A is equivalent to B over F then B is also equivalent to

A over F, for
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A = PBQ⇒ B = P−1AQ−1

where P−1 and Q−1 are non-singular matrices over F.

III Transitivity: If A is equivalent to B over F and B is equivalent yo C

over F then A is also equivalent to C over F for

A = PBQ and B = LCM

⇒ A = PLCMQ = (PL)C(MQ)

where PL, MQ being the product of non-singular matrices over F are

themselves non-singular over F.

Thus the relation of being equivalent is reflexive, Symmetric and tran-

sitive.

Result: Two equivalent matrices have same rank.

15 Rank of The Products:

Theorem 13: The rank of the product of two matrices cannot exceed the

rank of either of them. i.e.

ρ(AB) ≤ ρ(A) and ρ(AB) ≤ ρ(B)

Proof: Assume it without proof.

Example 25: Show that rank (AA′) = rank (A). (Provided that A is

nonsingular)

Solution: We know that
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rank (A) = rank (A′)

and

rank (AB) ≤ rank B

Let B = AA′, then

rank (B) = rank (AA′) ≤ rank (A)

Thus rank (AA′) ≤ rank (A).

Now

A−1B = A−1(AA′) = A′

Then

rank (A) = rank (A′)

= rank (A−1B) ≤ rank (B)

Thus rank (A) ≤ rank (B).

Hence rank (AA′) = rank (A).

Remarks: Similarly we can show that rank (AAθ) = rank (A).

Example 26: If A is a matrix of order m × n and R ia a non-singular

matrix of order m then shoe that

ρ(RA) = ρ(A)
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Solution: Let Nr be the normal form of A, then we have

RAC = Nr

⇒ A = R−1NrC
−1 · · · (1)

Since R and C are non-singular matrices hence , their inverses are possible.

So let R−1 = E and C−1 = F , which are also non-singular matrices. Hence

equation (1) becomes

A = ENrF

⇒ RA = RENrF

= INrF (∵ E = R−1andRR−1 = I,where I is a non-singular matrix to appropriate order)

⇒ RA ∼ Nr

∴ ρ(RA) = ρ(Nr) (∵ Rank of equivalent matrices are same)

= ρ(A) (∵ Rank of a matrix is equal to the rank of its normal form)
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16 Cayley Hamilton Theorem:

Characteristic Matrix:

Let A be a square matrix. Then the matrix polynomial A− xI of the first

degree is called the Characteristic Matrix of A.

Characteristic Polynomial:

Let A be a square matrix. Then the determinant |A − xI| which is an

ordinary polynomial in x, with scalar coefficients, is called the Characteristic

Polynomial of the matrix A.

e.g.

A =

 2 3

−1 4



⇒ A− xI =

 2 3

−1 4

− x
 1 0

0 1



=

 2− x 3

−1 4− x


This matrix is the characteristic matrix of A.
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Also

|A− xI| =

∣∣∣∣∣∣2− x 3

−1 4− x

∣∣∣∣∣∣
= (2− x)(4− x) + 3

= x2 − 6x+ 11

Thus |A− xI| = x2 − 6x+ 11 is the characteristic polynomial of A.

NOTE:

1. The constant term of the characteristic polynomial |A−xI| of A is |A|.

2. Degree of the characteristic polynomial of the matrix of order n× n is

n.

Characteristic Equation:

For any square matrix A , the equation |A− xI| = 0 is said to be Charac-

teristic Equation of the matrix A.

e.g. For A =

 2 3

−1 4

 characteristic equation is |A−xI| = x2−6x+11 = 0

i.e. x2 − 6x+ 11 = 0

Theorem: State and Prove Cayley-Hamilton Theorem.

Statement: Every square matrix satisfies its characteristic equation.
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OR

If A is a square matrix of order n×n and |A− xI| = a0 + a1x+ a2x
2 + · · ·+

anx
n = 0 is the characteristic equation of A , then

a0I + a1A+ a2A
2 + · · ·+ anA

n = 0 = On×n

Proof: Let A be any square matrix of order n× n.

Suppose |A− xI| = a0 + a1x+ a2x
2 + · · ·+ anx

n

Then a0 + a1x + a2x
2 + · · · + anx

n = 0 ...............(1) is the characteris-

tic equation of A.

Also suppose that

adj.(A− xI) = B0 +B1x+B2x
2 + · · ·+Bn−1x

n−1..........(2)

Now we know that ,

For any square matrix A

A(adj.A) = |A| · I = (adj.A)A

Then we have, (A− xI)(adj.A− xI) = |A− xI|I

⇒ (A− xI)(B0 +B1x+B2x
2 + · · ·+Bn−1x

n−1) = (a0 + a1x+ a2x
2 + · · ·+ anx

n)I

(∵ by (1) and (2))
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⇒ (AB0 + AB1x+ AB2x
2 + · · ·+ ABn−1x

n−1)− (B0x+B1x
2 + · · ·+Bn−1x

n)

= a0I + a1Ix+ a2Ix
2 + · · ·+ anIx

n

⇒ AB0 + (AB1 −B0)x+ (AB2 −B1)x
2 + (AB3 −B2)x

3 + · · ·+ (ABn−1 −Bn−2)x
n−1 −Bn−1x

n

= a0I + a1Ix+ a2Ix
2 + · · ·+ anIx

n

Comparing coefficients of equal powers of x on both sides, we get

AB0 = a0I

(AB1 −B0) = a1I

(AB2 −B1) = a2I

(AB3 −B2) = a3I

...
...

(ABn−1 −Bn−2) = an−1I

−Bn−1 = anI

Pre-multiplying the 1st equation with I , 2nd equation with A, 3rd equation

with A2 and so on and then adding we get

AB0 + A2B1 − AB0 + A3B2 − A2B1 + A4B3 − A3B2 + · · ·+ AnBn−1 − An−1Bn−2 − AnBn−1

= a0I + a1A+ a2A
2 + · · ·+ anA

n

⇒ On×n = a0I + a1A+ a2A
2 + · · ·+ anA

n

i.e. a0I + a1A+ a2A
2 + · · ·+ anA

n = On×n
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Hence the theorem is proved.

Question: Find the inverse of a non-singular square matrix A using Cayley-

Hamilton Theorem.

Answer:

Let A be a non-singular matrix of order n× n and

let a0 + a1x+ a2x
2 + · · ·+ anx

n = 0 be the characteristic equation of A.

Then a0 = |A| 6= 0 and by the Cayley-Hamilton Theorem we have

a0I + a1A+ a2A
2 + · · ·+ anA

n = On×n ............(1)

Pre-multiplying (1) with A−1, we get

a0A
−1I + a1A

−1A+ a2A
−1A2 + · · ·+ anA

−1An = A−1On×n

⇒ A−1 =
−1

a0
(a1I + a2A+ · · ·+ anA

n−1)

Example: Find the characteristic equation of the matrixA =


2 −1 1

−1 2 −1

1 −1 2


and verify that it is satisfied by A and hence obtain A−1.

Solution:

The characteristic equation of A is |A− xI| = 0
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⇒

∣∣∣∣∣∣∣∣∣
2− x −1 1

−1 2− x −1

1 −1 2− x

∣∣∣∣∣∣∣∣∣ = 0

⇒ (2− x)[(2− x)(2− x)− 1] + 1[(−1)(2− x) + 1] + 1[1− (2− x)] = 0

⇒ (2− x)[4− 4x+ x2 − 1] + (x− 1) + (x− 1) = 0

⇒ (2− x)(x2 − 4x+ 3) + 2x− 2 = 0

⇒ 2x2 − 8x+ 6− x3 + 4x2 − 3x+ 2x− 2 = 0

⇒ −x3 + 6x2 − 9x+ 4 = 0.............(1)
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Now,

A2 = A · A

=


2 −1 1

−1 2 −1

1 −1 2




2 −1 1

−1 2 −1

1 −1 2



=


6 −5 5

−5 6 −5

5 −5 6



A3 = A2 · A =


6 −5 5

−5 6 −5

5 −5 6




2 −1 1

−1 2 −1

1 −1 2



=


22 −21 21

−21 22 −21

21 −21 22


Replacing x by A, x2 by A2 and x3 by A3 in equation (1), we get

−A3 + 6A2 − 9A+ 4I

= −


22 −21 21

−21 22 −21

21 −21 22

+6


6 −5 5

−5 6 −5

5 −5 6

−9


2 −1 1

−1 2 −1

1 −1 2

+4


1 0 0

0 1 0

0 0 1
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=


0 0 0

0 0 0

0 0 0


i.e. −A3 + 6A2 − 9A+ 4I = O3×3...............(2).

which shows that Cayley Hamilton theorem is verified.

By (1), |A| = constant term = 4

i.e. |A| 6= 0.

∴ A is non-singular.

Multiplying equation (2) with A−1 , we get

A−1(−A3 + 6A2 − 9A+ 4I) = A−1O3×3

⇒ −A2 + 6A− 9I + 4A−1 = O3×3
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⇒ A−1 =
1

4
(A2 − 6A+ 9I)

=
1

4
(


6 −5 5

−5 6 −5

5 −5 6

− 6


2 −1 1

−1 2 −1

1 −1 2

+ 9


1 0 0

0 1 0

0 0 1

)

=
1

4


3 1 −1

1 3 1

−1 1 3



Example: Show that the matrix A =


1 2 0

2 −1 0

0 0 −1

 satisfies Cayley-

Hamilton theorem. Hence obtain A−1 and A−2.

Solution:

The characteristic equation of A is |A− xI| = 0.

⇒

∣∣∣∣∣∣∣∣∣
1− x 2 0

2 −1− x 0

0 0 −1− x

∣∣∣∣∣∣∣∣∣ = 0

⇒ (1− x)[(1 + x)2 − 0]− 2[2(−1− x)− 0] + 0 = 0

⇒ (1− x)(1 + 2x+ x2) + 4 + 4x = 0

⇒ 1 + 2x+ x2 − x− 2x2 − x3 + 4 + 4x = 0
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⇒ −x3 − x2 + 5x+ 5 = 0

Thus −x3 − x2 + 5x+ 5 = 0 is the characteristic equation of A.

Now,

A2 = A · A =


1 2 0

2 −1 0

0 0 −1




1 2 0

2 −1 0

0 0 −1

 =


5 0 0

0 5 0

0 0 1



Then A3 = A2 · A =


5 0 0

0 5 0

0 0 1




1 2 0

2 −1 0

0 0 −1

 =


5 10 0

10 −5 0

0 0 −1


∴ −A3 − A2 + 5A+ 5I

= −


5 10 0

10 −5 0

0 0 −1

−


5 0 0

0 5 0

0 0 1

+ 5


1 2 0

2 −1 0

0 0 −1

+ 5


1 0 0

0 1 0

0 0 1



=


0 0 0

0 0 0

0 0 0


∴ −A3 − A2 + 5A+ 5I = O3×3............(1)
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which shows that Cayley Hamilton theorem has been verified.

Now, |A| = 5 6= 0

∴ A is non-singular.

Multiplying (1) with A−1, we get

−A2 − A+ 5I + 5A−1 = O3×3

⇒ 5A−1 = A2 + A− 5I

=


5 0 0

0 5 0

0 0 1

+


1 2 0

2 −1 0

0 0 −1

− 5


1 0 0

0 1 0

0 0 1



=


1 2 0

2 −1 0

0 0 −5



⇒ A−1 =
1

5


1 2 0

2 −1 0

0 0 −5
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Also,

A−2 = A−1 · A−1

=
1

5


1 2 0

2 −1 0

0 0 −5

 1

5


1 2 0

2 −1 0

0 0 −5



=
1

25


5 0 0

0 5 0

0 0 25



∴ A−2 =
1

25


5 0 0

0 5 0

0 0 25


Example: Verify the Calyey Hamilton theorem for the following matrix.

Hence find its inverse if possible.

A =


1 2 3

2 −1 4

3 1 1


Solution: The characteristic equation of A is |A− xI| = 0.

⇒

∣∣∣∣∣∣∣∣∣
1− x 2 3

2 −1− x 4

3 1 1− x

∣∣∣∣∣∣∣∣∣ = 0
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⇒ (1− x)[(−1− x)(1− x)− 4]− 2[2(1− x)− 12] + 3[2− 3(−1− x)] = 0

⇒ (1− x)[−(1− x2)− 4]− 2[2− 2x− 12] + 3[2 + 3 + 3x] = 0

⇒ (1− x)(x2 − 5) + 20 + 4x+ 15 + 9x = 0

⇒ x2 − 5− x3 + 5x+ 20 + 4x+ 15 + 9x = 0

⇒ −x3 + x2 + 18x+ 30 = 0

now A2 = A · A =


1 2 3

2 −1 4

3 1 1




1 2 3

2 −1 4

3 1 1

 =


14 3 14

12 9 6

8 6 14



Also A3 = A2 · A =


14 3 14

12 9 6

8 6 14




1 2 3

2 −1 4

3 1 1

 =


62 39 68

48 21 78

62 24 62



80



∴ −A3 + A2 + 18A+ 30I

= −


62 39 68

48 21 78

62 24 62

+


14 3 14

12 9 6

8 6 14

+ 18


1 2 3

2 −1 4

3 1 1

+ 30


1 0 0

0 1 0

0 0 1



=


0 0 0

0 0 0

0 0 0


i.e −A3 + A2 + 18A+ 30I = O3×3.......(1)

Which shows that Cayley Hamilton theorem is verified.

Here |A| = 18 6= 0, So A−1 exists.

Multiplying (1) by A−1, we get

−A2 + A+ 18I + 30A−1 = O3×3
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⇒ 30A−1 = A2 − A− 18I

=


14 3 14

12 9 6

8 6 14

−


1 2 3

2 −1 4

3 1 1

− 18


1 0 0

0 1 0

0 0 1



=


−5 1 11

10 −5 2

5 5 −5



∴ A−1 =
1

30


−5 1 11

10 −5 2

5 5 −5



HOMEWORK: Verify Cayley-Hamilton theorem for the matrixA =


0 1 2

3 −3 2

1 1 −1

.

Hence find the inverse , if possible.

Theorem: The characteristic equation of a 2 × 2 matrix A is given by

λ2 − S1λ+ |A| = 0 where S1 = trace(A).

Proof:

Let A =

 a11 a12

a21 a22
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The characteristic equation is given by |A− λI| = 0

⇒

∣∣∣∣∣∣a11 − λ a12

a21 a22 − λ

∣∣∣∣∣∣ = 0

⇒ (a11 − λ)(a22 − λ)− a12a21 = 0

⇒ a11a22 − λ(a11 + a22) + λ2 − a12a21 = 0

⇒ λ2 − λ(a11 + a22) + (a11a22 − a12a21) = 0

⇒ λ2 − s1λ+ |A| = 0

Theorem: The characteristic equation of a 3×3 matrix A is given by λ3−

S1λ
2+S2λ−|A| = 0. Where S1 = trace(A), S2 = sum of the minors of the principal diagonal =

A11 + A22 + A33.

Example: Verify Cayley-Hamilton theorem for A =


2 1 1

0 1 0

1 1 2

 and use

it to find a simplified form of A8−5A7+7A6−3A5+A4−5A3+8A2−2A+I3.

Solution:

The characteristic equation is: λ3 − S1λ
2 + S2λ− |A| = 0

Where S1 = trace(A) = 2 + 1 + 2 = 5,

S2 = sum of the minors of the principal diagonal = A11 + A22 + A33

=

∣∣∣∣∣∣1 0

1 2

∣∣∣∣∣∣+

∣∣∣∣∣∣2 1

1 2

∣∣∣∣∣∣+

∣∣∣∣∣∣2 1

0 1

∣∣∣∣∣∣ = 2 + 3 + 2 = 7
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And, |A| = 2(2)− 1(0) + 1(−1) = 3

∴ The characteristic equation becomes λ3 − 5λ2 + 7λ− 3 = 0.

Now we show that A3 − 5A+ 7A− 3 = O3×3

A2 = A · A =


2 1 1

0 1 0

1 1 2




2 1 1

0 1 0

1 1 2

 =


5 4 4

0 1 0

4 4 5



And

A3 = A2 · A =


5 4 4

0 1 0

4 4 5




2 1 1

0 1 0

1 1 2

 =


14 13 13

0 1 0

13 13 14
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∴ A3 − 5A2 + 7A− 3I3 =


14 13 13

0 1 0

13 13 14

− 5


5 4 4

0 1 0

4 4 5

+ 7


2 1 1

0 1 0

1 1 2

− 3


1 0 0

0 1 0

0 0 1



=


0 0 0

0 0 0

0 0 0



= O3

Which shows that Cayley Hamilton Theorem is verified.

Now we divide the polynomial A8−5A7+7A6−3A5+A4−5A3+8A2−2A+I3

by the characteristic polynomial A3 − 5A2 + 7A− 3I3.
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Thus, A8 − 5A7 + 7A6 − 3A5 + A4 − 5A3 + 8A2 − 2A+ I3

= (A5 + A)(A3 − 5A2 + 7A− 3I3) + (A2 + A+ I3)

= (A5 + A)(O3) + (A2 + A+ I3)

= (A2 + A+ I3)

=


5 4 4

0 1 0

4 4 5

+


2 1 1

0 1 0

1 1 2




1 0 0

0 1 0

0 0 1

 =


8 5 5

0 3 0

5 5 8


17 System of Linear Homogeneous Equations

Consider a system of m linear equations in n unknowns which is

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

........................................

........................................

am1x1 + am2x2 + · · ·+ amnxn = 0

such that aij is a member of a number field F for every admissible value of

the suffixes i and j.This system of equations is known as the system of linear

homogeneous equations.

We write
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A =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·

· · · · · · · · · · · ·

am1 am2 · · · amn


X =



x1

x2

· · ·

· · ·

xn


O =



0

0

· · ·

· · ·

0


so that A,X and O are m×n,n×1 and m×1 matrices respectively over F. The

given system of equations is thus equivalent to the single matrix equation

AX = O ..........(1)

The number X = O is obviously a trivial solution of the matrix equation (1).

Result 1:

The equation AX = O has a non-zero solution if and only if the rank r of

A is less than the number n, i.e. of the unknowns.

Result 2:

A homogeneous system of linear equations necessarily possesses a non-zero

solution if the number n of unknowns exceeds the number m of equations.

Result 3:

Every singular matrix is a Right as well as Left zero divisor.
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The rank r of an n-rowed singular matrix being less than n, then by Result

1, there exists a non-zero matrix X such that

AX = O

Again the rank of the transpose A′ of A being the same as that of A, there

exists a non zero matrix Y such that

A′Y = O ⇒ Y ′A = O

so that A is also a left zero divisor.

18 System of Linear Non-Homogeneous Equa-

tions:

Consider a system of m linear equations in n unknowns which is

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

........................................

........................................

am1x1 + am2x2 + · · ·+ amnxn = bm

We can write this system as a single matrix equation

AX = B
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where B is the column matrix with m components b1, b2, · · · , bm in which

atleast one bi is non-zero. Then this system is known as system of linear

non-homogeneous equations.

Defination: The system of linear equations is said to be consistent if it

has at least one solution(either unique or infinitely many).

Defination: The system of equations is said to be inconsistent if it has

no solution.

Condition for consistency of non-homogeneous linear equations:

Theorem: The equation

AX = B

is consistent i.e. possesses a solution if and only if the two matrices A and

[A B] are of the same rank.

Corollary 1: Let A be an n-rowed non-singular square matrix.

In this case the rank of each A and [A B] is n.

Thus the equation AX = B is consistent. Also the solution in this case

is unique.

We already know that A−1B is the unique solution in this case.
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Defination:

The matrix of the form

Ã = [A|B] =


a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

· · · · · · · · · · · · · · ·

am1 am2 · · · amn bm


is called an augmented matrix.

Solution of the system of equations by Gauss Elimination Method:

Consider a system of linear equations AX = B.

Step 1 : Write the augmented matrix of the given system.

Step 2 : Obtain the Triangular form (Row Echelon Form) of the aug-

mented matrix. Then we have three possibilities.

� If the last row is a zero row (i.e all entries on left side of augmented

matrix and entry on the right side of augmented matrix is zero)

then system has infinitely many solutions.

� If the entries of the last row in the left side of augmented matrix

are all zero but the entry on the right side of augmented matrix

is non zero then the system has no solution.
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� If the augmented matrix does not have any zero row then inverse

of A exists. In that case system has a unique solution which can

be obtained by using back substitution.

Example: Solve the following system of equations

2x+ y + z = 0

3x+ 2y + 3z = 18

x+ 4y + 9z = 16

Solution: The corresponding augmented matrix is

[A|B] =


2 1 1 0

3 2 3 18

1 4 9 16


R1 →

1

2
R1

∼


1 1

2
1
2

0

3 2 3 18

1 4 9 16


R2 → R2 + (−3)R1, R3 → R3 + (−1)R1

∼


1 1

2
1
2

0

0 1
2

3
2

18

0 7
2

17
2

16


R2 → (2)R2

∼


1 1

2
1
2

0

0 1 3 36

0 7
2

17
2

16
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R3 → R3 + (
−7

2
)R2

∼


1 1

2
1
2

0

0 1 3 36

0 0 −2 −110


R3 → (

−1

2
)R3

∼


1 1

2
1
2

0

0 1 3 36

0 0 1 55


The resulting system is an upper triangular, which yields

x+
1

2
y +

1

2
z = 0

y + 3z = 36

z = 55

Back substitution gives the solution : z = 55, y = −129, x = 37.

Example : Solve the following system of equations using Gauss Elimi-

nation method.

x− 2y + w = 3

−x+ 2y + z − 1

2
w = −7

4x− 8y + 6z + 7w = −3

Solution: The corresponding augmented matrix is given by
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[A|B] =


1 −2 0 1 3

−1 2 1 −1
2
−7

4 −8 6 7 −3


R2 → R2 +R1, R3 → R3 + (−4)R1

[A|B] =


1 −2 0 1 3

0 0 1 1
2
−4

0 0 6 3 −15


R3 → R3 + (−6)R2

[A|B] =


1 −2 0 1 3

0 0 1 1
2
−4

0 0 0 0 9


The resultant system is

x− 2y + w = 3

z +
1

2
w = −4

0 = 9

Which is not possible. Thus the system is inconsistent.

Example: Consider the following system:

x+ y + z = 6

x+ 2y + 3z = 10

x+ 2y + λz = µ
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For what values of λ and µ do the system has (i) no solution (ii) unique

solution (iii) infinite solution.

Solution: The corresponding augmented matrix is given by

[A|B] =


1 1 1 6

1 2 3 10

1 2 λ µ


R2 → R2 −R1, R3 → R3 −R− 1

∼


1 1 1 6

0 1 2 4

0 1 λ− 1 µ− 6


R3 → R3 +R2

∼


1 1 1 6

0 1 2 4

0 0 λ− 3 µ− 10


(i) If λ − 3 = 0 and µ − 10 6= 0 , i.e. if λ = 3 and µ 6= 10 then the system

does not have any solution.

(ii) If λ − 3 6= 0 then the system has a unique solution. That is λ 6= 3 and

µ can possess any real value.

(iii) If λ− 3 = 0 and µ− 10 = 0 that is λ = 3 and µ = 10 then the system

has infinite solution.

Example: Solve the following system for x, y and z:
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−1

x
+

3

y
+

4

z
= 30,

3

x
+

2

y
− 1

z
= 9,

2

x
− 1

y
+

2

z
= 10

Solution: Let
1

x
= x′,

1

y
= y′,

1

z
= z′.

Thus we have

−x′ + 3y′ + 4z′ = 30, 3x′ + 2y′ − z′ = 9, 2x′ − y′ + 2z′ = 10
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Using Gauss Elimination method we get,

[A|B] =


−1 3 4 30

3 2 −1 9

2 −1 2 10

 R1 → (−1)R1

∼


1 −3 −4 −30

3 2 −1 9

2 −1 2 10

 R2 → R2 + (−3)R1, R3 → R3 + (−2)R1

∼


1 −3 −4 −30

0 11 11 99

0 5 10 70

 R2 →
1

11

∼


1 −3 −4 −30

0 1 1 9

0 5 10 70

 R3 → R3 + (−5)R2

∼


1 −3 −4 −30

0 1 1 9

0 0 5 25

 R3 →
1

5

∼


1 −3 −4 −30

0 1 1 9

0 0 1 5
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The resultant system is

x′ − 3y′ − 4z′ = −30

y′ + z′ = 9

z′ = 5

By backward substitution we get ,

z′ = 5⇒ y′ = 9− 5 = 4⇒ x′ = −30 + 3(4) + 4(5) = 2

∴ x =
1

2
, y =

1

4
, z =

1

5

Example: What conditions must b1, b2, b3 satisfy in order for,

x1 + 2x2 + 3x− 3 = b1, 2x1 + 5x2 + 3x3 = b2, x1 + 8x3 = b− 3

be consistent ?
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Solution: Solving the system by Gauss Elimination Method we get,

[A|B] =


1 2 3 b1

2 5 3 b2

1 0 8 b3

 R2 → R2 + (−2)R1, R3 → R3 −R1

∼


1 2 3 b1

0 1 −3 b2 − 2b1

0 −2 5 b3 − b1

R3 → R3 + 2R2

∼


1 2 3 b1

0 1 −3 b2 − 2b1

0 0 −1 b3 + 2b2 − 5b1

R3 → (−1)R3

∼


1 2 3 b1

0 1 −3 b2 − 2b1

0 0 1 −b3 − 2b2 + 5b1


Since inverse of A exists, the solution is unique for every choice of the values

of b1, b2, b3.

Example: Solve the following system by Gauss Elimination method:

2x+ 2y + 2z = 0,−2x+ 5y + 2z = 1, 8x+ y + 4z = −1
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Solution: The corresponding augmented matrix is given by,

[A|B] =


2 2 2 0

−2 5 2 1

8 1 4 −1

 R1 →
1

2

∼


1 1 1 0

−2 5 2 1

8 1 4 −1

 R2 → R2 + 2R− 1, R3 → R3 + (−8)R1

∼


1 1 1 0

0 7 4 1

0 −7 −4 −1

 R2 →
1

7

∼


1 1 1 0

0 1 4
7

1
7

0 −7 −4 −1

 R3 → R3 + 7R2

∼


1 1 1 0

0 1 4
7

1
7

0 0 0 0


Note that the last row is zero row , so the system has infinitely many solu-

tions. The resultant system is given by,

x+ y + z = 0, y +
4

7
z =

1

7
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Let z = k ∈ R.

∴ y =
1

7
− 4

7
k and x = −1

7
+

4

7
k − k = −1

7
− 3

7
k

∴ The solution set is {(−1

7
− 3

7
k,

1

7
− 4

7
k, k) : k ∈ R}.

19 Solving Homogeneous Linear System of

Equations:

Example: Solve the following system of equations:

4x+ 3y − z = 0, 3x+ 4y + z = 0, 5x+ y − 4z = 0
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Solution: The corresponding augmented matrix is given by,

[A|O] =


4 3 −1 0

3 4 1 0

5 1 −4 0

 R1 → R1 −R2

∼


1 −1 −2 0

3 4 1 0

5 1 −4 0

 R2 → R2 + (−3)R1, R3 → R3 + (−5)R1

∼


1 −1 −2 0

0 7 7 0

0 6 6 0

 R2 →
1

7
R2

∼


1 −1 −2 0

0 1 1 0

0 6 6 0

 R1 → R1 +R2, R3 → R3 + (−6)R2

∼


1 0 −1 0

0 1 1 0

0 0 0 0


The last row is zero row. (i.e. rank(A) < 3). Hence the system has a non

trivial solution.
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The resultant system is

x− z = 0

y + z = 0

Let z = k ⇒ y = −k, x = k.

∴ The solution set is {(k,−k, k)|k ∈ R}.

Example: Find the value of λ so that the equations:

2x+ y + 2z = 0

x+ y + 3z = 0

4x+ 3y + λz = 0

have a non-trivial solution.
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Solution: The corresponding augmented matrix is given by

[A|O] =


2 1 2 0

1 1 3 0

4 3 λ 0

 R1 ↔ R2

∼


1 1 3 0

2 1 2 0

4 3 λ 0

 R2 → R2 + (−2)R1, R3 → R3 + (−4)R1

∼


1 1 3 0

0 −1 −4 0

0 −1 λ− 12 0

 R2 → (−1)R2

∼


1 1 3 0

0 1 4 0

0 −1 λ− 12 0

 R3 → R3 +R2, R1 → R1 −R2

∼


1 0 −1 0

0 1 4 0

0 0 λ− 8 0


The system will have a non-trivial solution if the last row is zero row.

Then we must have λ− 8 = 0⇒ λ = 8.
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20 Characteristic Roots And Characteristic

Vectors of a Matrix

Characteristic Roots and Characteristic Vectors of a Square Ma-

trix:

Defination: Any non-zero vector, X is said to be a Characteristic Vector

of a matrix A is there exists a number λ such that

AX = λX

Also then λ is called the Characteristic Root of the matrix A corresponding

to the characteristic vector X and vice versa.

NOTE: Characteristic Roots(Vectors) are also called Proper, Latent or

Eigen values(vectors).

Theorem: A characteristic vector of a matrix cannot correspond to two

different characteristic roots.

Proof: Let X be a characteristic vector of A corresponding to two dif-

ferent characteristic roots λ1 and λ2.

Then AX = λ1X and AX = λ2X.

⇒ λ1X = λ2x
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⇒ (λ1 − λ2)X = O

⇒ X = O or λ1 − λ2 = 0

But X 6= O.

Thus λ1 − λ2 = 0.

i.e λ1 = λ2.

Remark: From above result , a characteristic vector of a matrix corre-

sponds to a unique characteristic root, but a characteristic root can corre-

spond to different characteristic vectors.

If λ is a characteristic root of matrix A corresponding to characteristic vector

X,

then AX = λX.

For k 6= 0 A(kX) = k(AX) = k(λX) = λ(kX).

∴ kX is also a characteristic vector corresponding to λ.

Defination: The set of all characteristic roots of the matrix A is called
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the spectrum of A.

Defination: Let A be any n × n matrix and λ be any eigen value for

A. Then the set Eλ = {X|AX = λX} is called the eigen space of λ.

Determination of Characteristic Roots and Vectors:

Theorem: Let A be an n × n matrix and λ be a real number. Then λ

is an eigen value of A if and only if |A−λI| = 0.Thus the eigen value is a so-

lution of the characteristic equation of A. The eigen vectors corresponding to

λ are the non-trivial (i.e. non-zero) solutions of the system (A−λIn×n)X = 0

Remark: For the non-trivial solution of the system (A − λI)X = O the

rank of the matrix A− λI should be less than n. So for a 3× 3 matrix A we

may solve any two (non-parallel) equations using Cramer’s Rule to find the

eigen vectors.

Example: Find Eigen Values and Eigen Vectors of

A =


−4 8 −12

6 −6 12

6 −8 14


Solution:

The characteristic equation is |A− λI3| = 0
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∴

∣∣∣∣∣∣∣∣∣
−4− λ 8 −12

6 −6− λ 12

6 −8 14− λ

∣∣∣∣∣∣∣∣∣ = 0

⇒ (−4−λ)[(−6−λ)(14−λ)+96]−8[6(14−λ)−72]−12[−48−6(−6−λ)] = 0

⇒ (−4−λ)[−84+6λ−14λ+λ2+96]−8[84−6λ−72]−12[−48+36+6λ] = 0

⇒ (−4− λ)(λ2 − 8λ+ 12)− 8(−6λ+ 12)− 12(6λ− 12) = 0

⇒ −4λ2 + 32λ− 48− λ3 + 8λ2 − 12λ+ 48λ− 96− 72λ+ 144 = 0

⇒ −λ3 + 4λ2 − 4λ = 0

⇒ λ(λ− 2)2 = 0

∴ The eigen values of the matrix A is given by λ = 0, 2.

To find Eigen Vector corresponding to λ = 0 :

We solve the system (A− 0I)X = O

⇒


−4 8 −12

6 −6 12

6 −8 14



x

y

z

 = O
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We have

−4x+ 8y − 12z = 0

6x− 6y + 12z = 0

6x− 8y + 14z = 0

By Cramer’s Rule we get,

x∣∣∣∣∣∣ 8 −12

−6 12

∣∣∣∣∣∣
=

−y∣∣∣∣∣∣−4 −12

6 12

∣∣∣∣∣∣
=

z∣∣∣∣∣∣−4 8

6 −6

∣∣∣∣∣∣
= k ∈ R

∴
x

24
=
−y
24

=
z

−24

∴
x

1
=

y

−1
=

z

−1
= k

∴ The eigen vectors corresponding to λ = 0 is given by

X = k


1

−1

−1

 ; k ∈ R− {0}

∴ The eigen space for λ1 = 0 is

E0 = {α(1,−1,−1)/α ∈ R}

To find eigen vectors corresponding to λ = 2:

We solve the system (A− 2I)X = O
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⇒


−6 8 −12

6 −8 12

6 −8 12



x

y

z

 = O

We have

−6x+ 8y − 12z = 0

6x− 8y + 12z = 0

6x− 8y2 + 12z = 0

All three equations are same. So we solve any one of them.

Let us consider

−6x+ 8y − 12z = 0

∴ x =
4

3
y − 2z

∴ Then eigen vectors corresponding to λ = 2 is given by ,

X =


4
3
y − 2z

y

z



=


4
3
y

y

0

+


−2z

0

z



= y


4
3

1

0

+ z


−2

0

1
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where y, z ∈ R− {0}

The eigen space is given by E2 = {y(4
3
, 1, 0) + z(−2, 0, 1) : y, z ∈ R}

Example: Find the eigen values and eigen vectors of the matrix

A =


−2 −8 −12

1 4 4

0 0 1


Solution: The characteristic equation is |A− λI3| = 0

∴

∣∣∣∣∣∣∣∣∣
−2− λ −8 −12

1 4− λ 4

0 0 1− λ

∣∣∣∣∣∣∣∣∣ = 0.

⇒ (−2− λ)[(4− λ)(1− λ)− 0] + 8[1(1− λ)− 0]− 12(0) = 0

⇒ (−2− λ)[4− 5λ+ λ2] + 8− 8λ = 0

⇒ −8 + 10λ− 2λ2 − 4λ+ 5λ2 − λ3 + 8− 8λ = 0

⇒ −λ3 + 3λ2 − 2λ = 0

⇒ (−λ)(λ− 2)(λ− 1) = 0.

∴ The eigen values of A are

λ = 0, 1, 2

To find eigen vectors corresponding to λ = 0:
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We solve the system (A− 0I) = O

⇒


−2 −8 −12

1 4 4

0 0 1



x

y

z

 = O.

This results into the following system of equations:

−2x− 8y − 12z = 0

x+ 4y + 4z = 0

z = 0

We solve the first two equations using Cramer’s Rule:

x∣∣∣∣∣∣−8 −12

4 4

∣∣∣∣∣∣
=

−y∣∣∣∣∣∣−2 −12

1 4

∣∣∣∣∣∣
=

z∣∣∣∣∣∣−2 −8

1 4

∣∣∣∣∣∣
∴
x

16
=
−y
4

=
z

0

∴
x

4
=
−y
1

=
z

0

∴ The eigen vector corresponding to λ = 0 is given by

X = k


4

−1

0

, where k ∈ R− {0}.

To find eigen vectors corresponding to λ = 1:

We solve the system (A− 1I)X = O
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⇒


−3 −8 −12

1 3 4

0 0 0



x

y

z

 = O

This results into the following system of equations:

−3x− 8y − 12z = 0

x+ 3y + 4z = 0

0 = 0

We solve first two equations using Cramer’s Rule,

x∣∣∣∣∣∣−8 −12

3 4

∣∣∣∣∣∣
=

−y∣∣∣∣∣∣−3 −12

1 4

∣∣∣∣∣∣
=

z∣∣∣∣∣∣−3 −8

1 3

∣∣∣∣∣∣
∴
x

4
=
−y
0

=
z

−1

∴ The eigen vector corresponding to λ = 1 is given by,

X = k


4

0

−1

 k ∈ R− {0}

To find eigen vectors corresponding to λ = 2:

We solve the system (A− 2I)X = O

⇒


−4 −8 −12

1 2 4

0 0 −1



x

y

z

 = O
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This results into the following system of equations:

−4x− 8y − 12z = 0

x+ 2y + 4z = 0

−z = 0

We solve first two equations using Cramer’s Rule,

x∣∣∣∣∣∣−8 −12

2 4

∣∣∣∣∣∣
=

−y∣∣∣∣∣∣−4 −12

1 4

∣∣∣∣∣∣
=

z∣∣∣∣∣∣−4 −8

1 2

∣∣∣∣∣∣
∴

x

−8
=
−y
−4

=
z

0

∴
x

−2
=
y

1
=
z

0

∴ The eigen vector corresponding to λ = 1 is given by,

X = k


−2

1

0

 k ∈ R− {0}

Example: Find the eigen values and eigen vectors of the matrix

A =


3 −1 1

−1 5 −1

1 −1 3


Solution:
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The characteristic equation is |A− λI| = 0

Which is λ3 − S1λ
2 + S2λ− |A| = 0

where

S1 = trace(A) = 11

S2 = Sum of minors of diagonal element =

∣∣∣∣∣∣ 5 −1

−1 3

∣∣∣∣∣∣+

∣∣∣∣∣∣3 1

1 3

∣∣∣∣∣∣+

∣∣∣∣∣∣ 3 −1

−1 5

∣∣∣∣∣∣ =

14 + 8 + 14 = 36

|A| = 3(14) + 1(−2) + (−4) = 42− 6 = 36

∴ The characteristic equation is given by

λ3 − 11λ2 + 36λ− 36 = 0

⇒ (λ− 2)(λ− 3)(λ− 6) = 0

∴ λ = 2, 3, 6 are the eigen values of A.

To find eigen vectors corresponding to λ = 2:

We solve the system (A− 2I) = O
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⇒


1 −1 1

−1 3 −1

1 −1 1



x

y

z

 = O.

This results into the following system of equations:

x− y + z = 0

−x+ 3y − z = 0

x− y + z = 0

We solve the first two equations using Cramer’s Rule:

x∣∣∣∣∣∣−1 1

3 −1

∣∣∣∣∣∣
=

−y∣∣∣∣∣∣ 1 1

−1 −1

∣∣∣∣∣∣
=

z∣∣∣∣∣∣ 1 −1

−1 3

∣∣∣∣∣∣
∴

x

−2
=
−y
0

=
z

2

∴
x

−1
=
y

0
=
z

1

∴ The eigen vector corresponding to λ = 2 is given by

X = k


−1

0

1

, where k ∈ R− {0}.

To find eigen vectors corresponding to λ = 3:

We solve the system (A− 3I) = O
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⇒


0 −1 1

−1 2 −1

1 −1 0



x

y

z

 = O.

This results into the following system of equations:

0x− y + z = 0

−x+ 2y − z = 0

x− y + 0z = 0

We solve the first two equations using Cramer’s Rule:

x∣∣∣∣∣∣−1 1

2 −1

∣∣∣∣∣∣
=

−y∣∣∣∣∣∣ 0 1

−1 −1

∣∣∣∣∣∣
=

z∣∣∣∣∣∣ 0 −1

−1 2

∣∣∣∣∣∣
∴

x

−1
=
−y
1

=
z

−1

∴
x

1
=
y

1
=
z

1

∴ The eigen vector corresponding to λ = 3 is given by

X = k


1

1

1

, where k ∈ R− {0}.

To find eigen vectors corresponding to λ = 6:

We solve the system (A− 6I) = O
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⇒


−3 −1 1

−1 −1 −1

1 −1 −3



x

y

z

 = O.

This results into the following system of equations:

−3x− y + z = 0

−x− y − z = 0

x− y − 3z = 0

We solve the first two equations using Cramer’s Rule:

x∣∣∣∣∣∣−1 1

−1 −1

∣∣∣∣∣∣
=

−y∣∣∣∣∣∣−3 1

−1 −1

∣∣∣∣∣∣
=

z∣∣∣∣∣∣−3 −1

−1 −1

∣∣∣∣∣∣
∴
x

2
=
−y
4

=
z

2

∴
x

1
=

y

−2
=
z

1

∴ The eigen vector corresponding to λ = 6 is given by

X = k


1

−1

1

, where k ∈ R− {0}.

Example: Find the eigen values and eigen vectors of the matrix

A =


−2 2 −3

2 1 −6

−1 −2 0
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Solution:

The characteristic equation is |A− λI| = 0

Which is λ3 − S1λ
2 + S2λ− |A| = 0

where

S1 = trace(A) = −1

S2 = Sum of minors of diagonal element =

∣∣∣∣∣∣ 1 −6

−2 0

∣∣∣∣∣∣+
∣∣∣∣∣∣−2 −3

−1 0

∣∣∣∣∣∣+
∣∣∣∣∣∣−2 2

2 1

∣∣∣∣∣∣ =

−12− 3− 6 = −21

|A| = −2(−12)− 2(−6)− 3(−3) = 24 + 12 + 9 = 45

∴ The characteristic equation is given by

λ3 + λ2 − 21λ− 45 = 0

⇒ (λ+ 3)2(λ− 5) = 0

∴ The eigen values of A is given by λ = −3, 5

To find eigen vectors corresponding to λ = 5:

We solve the system (A− 5I) = O
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⇒


−7 2 −3

2 −4 −6

−1 −2 −5



x

y

z

 = O.

This results into the following system of equations:

−7x+ 2y − 3z = 0

2x− 4y − 6z = 0

−x− 2y − 5z = 0

We solve the first two equations using Cramer’s Rule:

x∣∣∣∣∣∣ 2 −3

−4 −6

∣∣∣∣∣∣
=

−y∣∣∣∣∣∣−7 −3

2 −6

∣∣∣∣∣∣
=

z∣∣∣∣∣∣−7 2

2 −4

∣∣∣∣∣∣
∴

x

−24
=
−y
48

=
z

24

∴
x

−1
=

y

−2
=
z

1

∴ The eigen vector corresponding to λ = 5 is given by

X = k


−1

−2

1

, where k ∈ R− {0}.

To find eigen vector corresponding to λ = −3:

We solve the system (A+ 3I)X = O
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⇒


1 2 −3

2 4 −6

−1 −2 3



x

y

z

 = O

This result into the following system of equations:

x+ 2y − 3z = 0

2x+ 4y − 6z = 0

−x− 2y + 3z = 0

All three equations are same so we solve any one of them.

Let us consider

x+ 2y − 3z = 0

∴ x = −2y + 3z
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∴ The eigen vector corresponding to λ = −3 is given by,

X =


−2y + 3z

y

z



=


−2y

y

0

+


3z

0

z



= y


−2

1

0

+ z


3

0

1


where y, z ∈ R− {0}.

HOMEWORK: Find the eigen values and eigen vectors of the matrix

A =


0 1 1

1 0 1

1 1 0


21 Nature of the Characteristic Roots of Some

Special Types of Matrices:

Theorem: The characteristic roots of a Hermitian matrices are all real.
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Proof: let λ be a characteristic root of a hermitian matrix A. Then there

is a non-zero vector X such that

AX = λX

Pre multiplying with Xθ we get,

XθAX = XθλX = λXθIX

i.e. XθAX = λXθIX............(1)

Now XθAX and XθIX are real numbers.

Also XθX 6= 0 because X 6= O.

∴ By (1) λ =
XθAX

XθIX
is real.

Corollary : The characteristic roots of a real symmetric matrix are all real.

Proof: Let A be any real symmetric matrix.

Then

Aθ = (A)′ = A′ (A = A as A is real)

= A (∵ A is symmetric)

i.e. A is a Hermitian Matrix.

∴ By above theorem , the characteristic roots of A are all real.
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Corollary : A characteristic root of a Skew-Hermitian matrix is either

zero or a purely imaginary number.

Proof: Let A be any Skew-Hermitian matrix and λ be a characteristic

root of A.

Then there is a non-zero vector X such that

AX = λX

⇒ i(AX) = i(λX)

⇒ (iA)X = (iλ)X

Now, (iA)θ = iAθ = −i(−A) (∵ i = −i Aθ = −A)

i.e. (iA)θ = iA.

∴ iA is a Hermitian and iλ is a characteristic root of iA.

∴ By above theorem iλ is real.

⇒ λ = 0 or λ =purely imaginary number.

Corollary: A characteristic root of a real skew-symmetric matrix is ei-

ther zero or a purely imaginary number.
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Proof: Let A be a real skew-symmetric matrix.

Then

Aθ = (A)′

= A′ (∵ A = A as A is real)

= −A (∵ Ais skew-symmetric)

i.e.Aθ = −A

∴ A is skew-Hermitian matrix.

∴ By above corollary the characteristic root of A is either zero or purely

imaginary number.

Theorem: The modulus of characteristic root of a unitary matrix is unity.

i.e. 1.

Proof: Let A be any unitary matrix.

∴ AθA = I

Also let λ be a characteristic root of A and X be the corresponding charac-

teristic vector.

Then

(AX) = λA
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Taking the conjugate transpose on both sides, we get

(AX)θ = (λX)θ

⇒ XθAθ = λXθ

⇒ XθAθAX = λXθλX

⇒ XθIX = λλXθX (∵ AθA = I)

⇒ XθX = λλXθX

⇒ (1− λλ)XθX = 0.................(1)

Now, X 6= O ⇒ XθX 6= 0

∴ By (1) we must have

1− λλ = 0

⇒ λλ = 1

⇒ |λ|2 = 1

i.e.|λ| = 1

Corollary: The modulus of each characteristic root of an orthogonal ma-

trix is unity.

Proof: Let A be an orthogonal matrix.

Then A′A = I and A is real.

i.e. A′A = I and A = A.
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∴ AθA = I.

∴ A is a unitary matrix.

∴ By above theorem modulus of characteristic roots of A is unity.

22 The Construction of Orthogonal Matri-

ces:

Theorem: If S is a skew symmetric matrix then I − S is non-singular and

the matrix

A = (I + S)(I − S)−1

is orthogonal.

Solution: First we show that I − S is non-singular.

If possible assume that I − S is singular matrix.

Then

|I − S| = 0

⇒ |(−1)(S − I)| = 0

⇒ (−1)n|S − I| = 0

⇒ |S − I| = 0

Then 1 is an eigen value of S which is not possible as S is a skew symmetric

matrix , eigen values of S can be either zero or purely imaginary number.

Thus,
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|I − S| 6= 0

Hence I − S is a non-singular matrix.

Next we show that A = (I + S)(I − S)−1 is an orthogonal matrix.

Now,

A′ = [(I + S)(I − S)−1]′ = ((I − S)−1)′(I + S)′ = ((I − S)′)−1(I + S)′

But,

(I − S)′ = I ′ − S ′ = I + S

And,

(I + S)′ = I ′ + S ′ = I − S

∴ A′ = (I + S)−1(I − S)

∴ A′A = (I + S)−1(I − S)(I + S)(I − S)−1

= (I + S)−1(I + S)(I − S)(I − S)−1

= I

Thus A is an orthogonal matrix.

Theorem: Every orthogonal matrix A can be expressed as

A = (I + S)(I − S)−1

by a suitable choice of a real skew-symmetric matrix S provided that -1 is

not a characteristic root of A.
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Proof: To prove the theorem it is sufficient to show that for an orthog-

onal matrix A such that -1 is not a characteristic root of A, such that

A = (I + S)(I − S)−1

determines a skew symmetric matrix S. Now

A = (I + S)(I − S)−1

⇒ A(I − S) = I + S

⇒ A− AS = I + S

⇒ A− I = (A+ I)S..............(1)

Since -1 is not a characteristic root of A we have

|A− (−1)I| 6= 0

Therefore,

|A+ I| 6= 0

Hence, (A + I)−1 exists. Therefore, premultiplying with (A + I)−1 on both

sides of (1) we get,

S = (A+ I)−1(A− I)
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This establishes existence of S. Finally we show that S is a real skew sym-

metric matrix.

S ′ = [(A+ I)−1(A− I)]′

= (A− I)′[(A+ I)−1]′

= (A− I)′[(A+ I)′]−1

= (A′ − I)(A′ + I)−1

= (A′ + I)−1(A′ − I)

= (A′ + A′A)−1(A′ − A′A)

= [A′(I + A)]−1[A′(I − A)]

= (I + A)−1(A′)−1A′(I − A)

= (I + A)−1(I − A)

= −(A+ I)−1(A− I)

= −S

Hence, S is a skew symmetric matrix.

Example: If A is non-singular, prove that the eigen values of A−1 are

the reciprocals of the eigen value of A.

Solution: Let λ be the eigen value of A and X be a corresponding eigen

vector.
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Then,

AX = λX ⇒ X = A−1(λX) = λ(A−1X)

⇒ 1

λ
X = A−1X

⇒ A−1X =
1

λ
X

Therefore,
1

λ
is an eigen value of A−1 and X is corresponding eigen vector.

Conversely, suppose that k is an eigen value of A−1. Since A is non-singular

therefore A−1 is non-singular (A−1)−1 = A. Therefore it follows from the

first part that
1

k
is an eigen value of A. Thus each eigen value of A−1 is equal

to the reciprocal of some eigen value of A.

Example: Show that a characteristic vector X, corresponding to a charac-

teristic root λ of a matrix A is also a characteristic vector of every vector of

every matrix f(A); f(x) being any scaler polynomial, and the corresponding

root for f(A) is f(λ). In general show that if g(x) =
f1(x)

f2(x)
; where |f2(A)| 6= 0

then g(λ) is a characteristic root of g(A) = f1(A)f2(A)−1.

Solution: Let λ be a characteristic root and X 6= 0 be corresponding char-

acteristic vector of matrix A. Therefore,

AX = λX

Now,

A2X = A(AX) = A(λX) = λ(AX) = λ2X
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Repeating the process k times, we get,

AkX = λkX

If f(x) = a0 + a1x+ a2x
2 + ...+ amx

m is a scaler polynomial then we have,

f(A)X = (a0I + a1A+ a2A
2 + ...+ amA

m)X

= a0X + a1AX + a2A
2X + ...+ amA

mX

= a0X + a1λX + a2λ
2X + ...+ amλ

mX

= (a0 + a1λ+ a2λ
2 + ...+ amλ

m)X

∴ f(A)X = f(λ)X

Therefore, f(λ) is a characteristic root of f(A) corresponding to character-

istic vector X. Hence, f1(λ) and f2(λ) are characteristic roots of f1(A) and

f2(A) respectively. Therefore,

f1(A)X = f2(λ)X and f1(A)X = f2(λ)X

Now, if |f2(A)| 6= 0 then f2(A) is a non-singular matrix and hence character-

istic roots of f2(A) are non-zero. Therefore,

f2(λ) 6= 0
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Hence, we also have f2(A)−1X = f2(λ)−1X Now, if g(A) = f1(A)f2(A)−1

then

g(A)X = f1(A)f2(A)−1X

= f1(A)f2(λ)−1X

= f2(λ)−1(f1(A)X)

= f2(λ)−1(f1(λ)X)

= f1(λ)f2(λ)−1X

= g(λ)X

Thus, g(λ) is a characteristic root and X is corresponding characteristic vec-

tor of g(A) = f1(A)f2(A)−1.

Example: Show that the two matrices A and P−1AP have the same char-

acteristic roots.

Solution: Let A be a square matrix and P be a non-singular matrix of

same order.

Suppose B = P−1AP .

Now,

B − xI = P−1AP − xI = P−1AP − P−1(xI)P = P−1(A− xI)P
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Therefore,

|B − xI| = |P−1(A− xI)P |

= |P−1||(A− xI)||P |

= |P−1||P ||(A− xI)|

= |P−1P ||(A− xI)|

= |I||(A− xI)|

= |(A− xI)|

Therefore,

|B − xI| = 0⇔ |A− xI| = 0

Therefore, P−1AP and A have same characteristic equations. Hence, P−1AP

and A have same characteristic roots.

Example: Show that the characteristics roots of Aθ are the conjugates

of the characteristic roots of A.

Solution: Let λ be the characteristic root and X 6= 0 be corresponding

characteristic vector of a square matrix A.

Now,

|Aθ − λ̄I| = |(A− λI)θ|

= |(A− λI)′|

= |(A− λI)|

Therefore,
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|Aθ − λ̄I| = 0⇔ |(A− λI)| = 0⇔ |A− λI| = 0

Hence, λ̄ is a characteristic root of Aθ whenever λ is a characteristic root of A.

Remark: With similar arguments we can show that if λ is an eigen value

of A then λ is also an eigen value of A′.

Example: Show that the characteristic roots of a triangular matrix are

just the diagonal elements of the matrix.

Solution: Let

A =


a11 a12 · · · a1n

0 a22 · · · a2n

· · · · · · · · · · · ·

0 0 · · · ann


∴

|A− λI| =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 · · · a1n

0 a22 − λ · · · a2n

· · · · · · · · · · · ·

0 0 · · · ann − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= (a11 − λ)(a22 − λ) · · · (ann − λ)

Hence the characteristic roots of A are a11, a22, · · · , ann, which are just the

diagonal elements of A.
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Example: Show that zero is an eigen value of a matrix A if and only

if A is singular matrix.

Solution: Let A be given matrix.

Assume that 0 is an eigen value of A.

Then

|A− 0I| = 0

⇒ |A| = 0

∴ A is a singular matrix.

Conversely, let A be a singular matrix ⇒ |A| = 0

∴ λ = 0 satisfies the equation |A− λI| = 0

∴ λ = 0 is an eigen value of A.

Example: If α is a characteristic root of a non-singular matrix A, the

prove that
|A|
α

is a characteristic root of adj. A.

Solution: Since α is a characteristic root of a non-singular matrix, there-

fore α 6= 0. Also α is a characteristic root of A, then there exists a non zero
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vector X such that

AX = αX

⇒ (adj. A)AX = (adj. A)αX

⇒ [(adj. A)A]X = α[(adj. A)X]

⇒ |A|X = α[(adj. A)X]

⇒ |A|
α
X = (adj. A)X

Since X is a non zero vector,
|A|
α

is a characteristic root of (adj. A).

HOMEWORK: Show that the characteristic roots of an idempotent ma-

trix are either zero or unity.

NOTES:

(i) The trace of a matrix A is the sum of the eigen values of A. i.e. if

λ1, λ2, · · · , λn are eigen values of A then tr. A = λ1 + λ2 + · · ·+ λn

(ii) The determinant of a matrix A is the product of the eigen values of

A.i.e. if λ1, λ2, · · · , λn are eigen values of A then |A| = λ1 · λ2 · · ·λn.
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